Radiology

Note: Thiscopy isfor your personal, non-commercial useonly. To order presentation-ready copies for
distribution to your colleagues or clients, use the Radiology Reprintsform at the end of thisarticle.

The Linear No-Threshold
Relationship Is Inconsistent
with Radiation Biologic and
Experimental Data’

Maurice Tubiana, MD
Ludwig E. Feinendegen, MD
Chichuan Yang, MD
Joseph M. Kaminski, MD

Published online
10.1148/radiol.2511080671

Radiology 2009; 251:13-22

1 From the Department of Medicine, Centre Antoine Be-
clere, Paris, France (M.T.); Department of Nuclear Medi-
cine, Heinrich-Heine-University Diisseldorf, Lindau, Ger-
many (L.E.F.); American Radiology Services, Bethesda,
Md (C.Y.); and National Institutes of Health, 6610 Rock-
ledge Dr, Room 4018, Bethesda, MD 20892 (J.M.K.).
Received April 13, 2008; revision requested June 26;
revision received September 19; accepted September 29;
final version accepted October 8. Address correspon-
dence to J.M.K. (e-mail: joseph.kaminski@fda.hhs.gov).

Funding:
J.M.K. is an employee of the National Institutes of Health.

Authors stated no financial relationship to disclose.

The views expressed in this article do not represent the
views of or endorsement by the United States Goverment
or the National Institutes of Health.

See also the article by Little et al in this issue.

© RSNA, 2009

he carcinogenic risk induced by low

doses of ionizing radiation is contro-

versial. It cannot be assessed with ep-
idemiologic methods alone because at low
doses the data are imprecise and often
conflicting. Since the 1970s, the radia-
tion protection community has esti-
mated the risk of low doses by means of
extrapolation from the risk assessed at
high doses, generally by using the linear
no-threshold (LNT) model.

The LNT relationship implies propor-
tionality between dose and cancer risk.
This approach is based on one set of data
and two hypotheses: (a) The relationship
between dose and DNA damage in vivo
seems linear from 1 mGy to 100 Gy with
use of H2AX foci as a marker for DNA
double-strand breaks (DSBs)—however,
this marker is not specific (1); (b) each DSB
is hypothesized to have the same probabil-
ity of inducing cell transformation, irrespec-
tive of the quantity of DSBs present simul-
taneously in the cell; and (c) each trans-
formed cell is hypothesized to have the
same probability of developing into an inva-
sive cancer, irrespective of the dose deliv-
ered to the tissue. The advances during the
past 2 decades in radiation biology, the un-
derstanding of carcinogenesis, and the dis-
covery of defenses against carcinogenesis
challenge the LNT model, which appears
obsolete (2-6).

Life developed in a bath of ionizing ra-
diation and solar ultraviolet radiation and
created aerobic organisms requiring (a) de-
fenses against the metabolically induced re-
active oxygen species, (b) DNA repair, and
(c) elimination of damaged cells. Several
sets of data show the efficacy of these
defenses to be much higher at low
than at high doses and for fractionated
or protracted irradiation than for
acute irradiation.

The LNT model was introduced as
a concept to facilitate radiation pro-
tection (7). But the use of this model
led to the claim that even the smallest
dose (one electron traversing a cell)

may initiate carcinogenesis—for in-
stance, from diagnostic x-ray sources
(8,9). This claim is highly hypothetical
and has resulted in medical, eco-
nomic, and other societal harm.

The French Academies report (10)
concluded that the LNT model and its use
for assessing the risks associated with low
doses are not based on scientific evidence.
In contrast, the Biological Effects of lonizing
Radiation (BEIR) VIl report (11) and that of
the International Commission on Radiolog-
ical Protection (ICRP) (12) recommended
the use of the LNT model. We wish to up-
date this debate by using recent radiation
biologic and epidemiologic data.

The Radiation Biologic Data

lonizing radiation interacts randomly with
molecules along charged particle tracks
and may damage DNA either through di-
rect events in the molecule (ionization or
excitation) or, more frequently, through
indirect mechanisms mediated by reac-
tive oxygen species produced by radio-
genic hydrolysis. Reactive oxygen species
also derive abundantly from oxygen me-
tabolism. The life of aerobic organisms
would have been impossible without de-
fenses against reactive oxygen species, as
shown by the study of patients with con-
genital diseases.

Irradiated cells protect themselves
(a) by immediate defense, repair, and
damage removal mechanisms and (b) by
delayed and temporary protection also
against renewed DNA damage, irre-
spective of its causes—that is, through
adaptive responses (Figure).
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Immediate Protections at Cell Level

Three types of immediately operating de-
fense mechanisms have been identified:
Defenses against reactive oxygen spe-
cies.—Oxygen metabolism, ionizing radi-
ation, ultraviolet radiation, and other in-
sults, such as an infection or physical ex-
ercise, can cause reactive oxygen species,
with oxidative stress vitally counteracted
by scavengers and antioxidant molecules
(13,14). These defenses are less effective
when the dose is high. Endogenous reac-
tive oxygen species may cause up to about
eight DSBs per cell each day, similar to that
induced by 200 mGy (or 0.14 mGy/min)

(15,16), but these are less severe than
radiation-induced DSBs.

DNA repair.—The repair mecha-
nisms present in mammalian cells have
existed in yeast for 800 million years.
Deinococcus radiodurans bacteria have
error-free repair mechanisms that can
tolerate doses of 7 kGy (17); in multicel-
lular organisms, the tolerance dose is
much lower. Sensor molecules may de-
tect DNA damage and activate signaling
factors. In turn, these factors may in-
duce cell cycle arrest and facilitate DNA
repair and other defense mechanisms
(18-24). The two main repair systems

1-500 mSv

Adaptive Response

Dose <3 mSv

No signaling:

Death of cells from

DNA damage Error free DNA
Repair
Elimination of
aberrant
cells

Micro-environment,
tissue, and immune
defenses

(-/'f (R (Low LET)

50-10Q mSv

>10Q mSV

Error prone repair

Elimination of most aberrant
cells but not all

Pre-neoplastic cells

el

Neoplastic clone
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Diagram shows that effects of low linear energy transfer (LET)ionizing radiation (/R)on mammalian cells are
dose dependent. With doses of less than 3 mSv at high or low dose rates, no signaling occurs, and mitotic cell
death ensues. A dose of 3-50 mSv results in primarily error-free DNA repair, along with elimination of aber-
rant cells through apoptosis or other types of mitotic death. At doses between 50 and 100 mSv, dose rate and
cell type play arole in whether a cell undergoes error-free repair or substantial levels of DNA misrepair. With
doses greater than 100 mSv, error-prone DNA repair is substantial. Fortunately, the majority of aberrant cells
are eliminated through cellular death pathways. Most of the preneoplastic cells are eliminated by immune
defenses, inhibited by the microenvironment (and tissug), or become senescent. Cancer promoters may
transforma preneoplastic clone to a neoplastic clone to eventual invasive cancer. Again, immune mechanisms
and the microenvironment (and tissue) may eliminate and/or suppress the neoplastic cells. Furthermore, after
irradiation (1-500 mSv), cells develop adaptive responses that counteract, in hitand non-hit cells, insults
from endogenous toxins (eg, reactive oxygen species produced from aerobic metabolism) or exogenous oxi-
dative stresses (eg, renewed irradiation, chemicals). The LNT hypothesis or slight modifications of it with the
dose and dose rate effectiveness factor (DDREF) is not compatible with the scientific evidence. The concept of
apractical threshold for carcinogenesis is plausible.

for DSBs are homologous recombina-
tion and nonhomologous end joining
(NHEJ). The signaling network and the
choice of the repair system are influ-
enced by dose, dose rate, nature of ra-
diation, and position of the cell in the
cell cycle. Atlow doses of x-rays, homol-
ogous recombination is error free, while
NHEJ is low error prone. The efficacy
and fidelity of DNA repair diminishes
with increasing amounts of DNA dam-
age simultaneously present in a cell. In-
deed, the carcinogenic risk is negligible
(or nonexistent) at low doses and dose
rates (6,21,25) and increases with
higher doses and dose rates (21,24-26).

Checkpoints throughout the cell cy-
cle allow for DNA repair or apoptosis
and decrease the likelihood of aberra-
tions and genomic instability in a dose-
dependent manner (27,28). Also, and
contrary to former beliefs, the magni-
tude of the mutagenic effect (per unit
dose) varies with dose rate (29,30),
reaching a minimum in the range of
1-10 mGy/min, which corresponds ap-
proximately to the rate of reactive oxy-
gen species—inducing DNA damage dur-
ing oxidative stress (16). The probabil-
ity of error during the repair of DSBs is
low when DSBs are widely separated in
space or time but increases drastically
when multiple breaks are present simul-
taneously (26). In humans, intrachro-
mosomal inversions and deletions are
not induced by doses less than 100 mSv
or at low dose rates (31-33). Also, large
studies performed in vivo or in vitro
have failed to reveal an increased inci-
dence of chromosomal aberration at
doses less than 20 mSv (34).

DNA repair also differs with type of
damage, dose, and dose rate through sig-
nals from adjacent cells. Human fibro-
blasts repair DSBs more efficiently after a
dose of 20 mGy than after a dose of 5
mGy, with no repair after a dose of 1.2
mGy in confluent cell cultures (1). Low-
dose cellular hyperradiosensitivity (HRS)
(35,36) decreases with increasing dose
and disappears at doses higher than 0.5
Gy because of full repair activation. HRS
eliminates at low doses potentially mutant
cells, thereby reducing the carcinogenic
risk. Defects in DNA repair systems are
associated with a higher cancer incidence
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in animals and in humans. An example is
ataxia telangiectasia (37).

Elimination of damaged cells by death
or proliferation arrest.—Elimination of
cells with altered DNA, a crucial defense
mechanism (38-42), may occur by apop-
tosis shortly after irradiation with doses
ranging from a few to about 200 mSv.
However, this mechanism of death is less
important in most cell types at high doses
when the number of cell deaths may
cause tissue dysfunction.

At less than a few millisieverts, DNA
repair is not activated, and mitotic cell
death occurs on resumption of prolifera-
tion (1,41). For doses higher than 5 mSv,
DNA repair is observed—for example, af-
ter computed tomographic (CT) scanning
(doses of 10-20 mGy) (42).

Senescence is an alternative pathway
for eliminating genetically defective cells
without sacrifice of functional advantages
before cell death (43-45).

Adaptive Responses

Besides immediate defenses against
detrimental effects in irradiated cells,
a stimulation of defenses is observed
in neighboring hit and non-hit cells,
including reactive oxygen species
scavenging, DNA repair, and damaged
cell removal by apoptosis and cell se-
nescence. These may occur in mam-
malian cells with a delay of up to hours
after low doses and may operate
against renewed exposure to radio-
genic and nonradiogenic genotoxins
for hours to months, depending on the
type of upregulation (46-49).

Such adaptive responses are ob-
served in cultured cells and in rodents
after doses of 1-500 mGy and disappear
with higher doses. Moreover, spontane-
ously transformed cells may die because
of cytokines released by nontransformed
cells (50,51). Low-dose irradiation hours or
days after a high dose also reduces
some of the high-dose genotoxic effects
(52). Adaptive responses exist in hu-
mans (53-53).

Bystander Effects

Irradiated cells may damage neighbor-
ing cells because of signals or products
(bystander effects) that have been
claimed to cause supralinear dose-effect

relationships. However, recent results
(56-58) suggest that on the contrary,
irradiated cells also protect neighbors,
thus acting as an adaptive response. Ir-
radiated fish release products into the
water that enhance the defenses against
carcinogenesis of other fish swimming
in the same water (59).

Furthermore, individuals contaminated
with radium (60) or thorium (61) did not
show excess cancer when the cumulative
dose was less than a few gray. No car-
cinogenic bystander effect has been ob-
served in these individuals (60,61). The
proliferation and promotion of poten-
tially mutant cells seems to be inhibited
by normal cells surrounding irradiated
cells, and only doses greater than a few
gray with resulting massive cell damage
promote carcinogenesis.

Genomic Instability

Persistent DNA damage causing chromo-
somal aberrations or aneuploidy may lead
to genomic instability in cell progeny (62—
65). However, doses less than 250 mSv of
x or y radiation yield no genetic instability
(65-67). This also appears to pertain to
low tissue doses from a particles in hu-
mans (10,16). The argument that low-
dose irradiation can induce a genomic in-
stability, which can in turn induce a cancer,
is not based on convincing data. Moreover,
some experimental data, such as those of
Boulton et al (68), show that in mice there
is no significant correlation between sensi-
tivity to radiation-induced genomic insta-
bility and cancer induction.

Defenses at Tissue Level

Neighboring cells control the prolifer-
ation of each other (69-72). Several
factors, such as infection and inflam-
mation (71,73), facilitate the emer-
gence of fully transformed clonal cells
or enhance malignant clonal prolifera-
tion. Precancerous cells can acquire
the capacity to overcome and also to
manipulate protective mechanisms, in
order to be recognized as a “friend”
instead of being fought as a “foe” (72).
Such situations occur after impair-
ment of the microenvironment (74-
76) or massive cell death following ex-
posure to large amounts of any geno-
toxic agent (physical or chemical),

with subsequent compensatory cell
proliferation by homeostatic mecha-
nisms (10,16). Tissue disorganization
through disease also facilitates the es-
cape of preneoplastic subclones from
the barriers of the microenvironment.
For example, liver cirrhosis and lung
fibrosis increase the likelihood of can-
cer in the liver and lung.

Immune mechanisms counteract dis-
ease-promoting agents and kill abnormal
cells (77-79). Immunosuppression often
precedes cancer (80). Immune compe-
tence may be upregulated by low-dose
radiation and reduce cancer risk (78,81).

When few cells are damaged, cell
death seems the simplest way to avoid
the presence of transformed cells
(10,78). However, when the dose be-
comes higher than about 200 mGy,
cellular impairment and death in-
crease tissue endangerment; thus,
DNA repair becomes mandatory de-
spite the risk of misrepair and muta-
tion. This conclusion is consistent with
microarray data: (a) The sets of genes
that are activated or repressed are not
the same after a low or a high dose
(82-84) or dose rate (83) and (b) the
temporal gene expressions are also
not the same after high doses (3 hours
after a 2-Gy dose) and low doses (only
after 48 hours for a 10-mGy dose)
(84). This is consistent with proteom-
ics and transcriptional changes being
different at high and low doses, not
only quantitatively but also qualita-
tively (86).

Hormesis

Upregulation of protective mechanisms
at the cell and tissue levels by low doses
likely also operates against carcinogenic
factors other than ionizing radiation and
against spontaneous cancer, as demon-
strated in various experiments in vitro
and in vivo (46,87-93), Indeed, a dose
of 10 mGy reduces the rate of spontane-
ous transformation in culture cells be-
low the background level. Some epide-
miologic data suggest that hormesis also
exists in humans (94).

Summary

Biologic data demonstrate that the de-
fense mechanisms against radiation-in-
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duced carcinogenesis are powerful and
diverse (Figure) (10,16,78,95,96). This
is not surprising, because organisms
have been subjected to reactive oxygen
species from physiologic processes and
environmental insults during evolution.
Life is characterized by the ability to
build defenses against toxic agents,
whether internal or environmental. The
defenses are overwhelmed at high doses
and are stimulated at low doses, which
is incompatible with the LNT model.

Epidemiologic Data

Analysis of the main studies reported on
radiation-induced carcinogenesis leads
us to conclude that there is no convinc-
ing evidence of a carcinogenic effect in
humans or experimental animals for
doses of less than 100 mGy of low linear
energy transfer radiation (10,12,97).
Little et al (98) have reached another
conclusion, because their interpreta-
tions of some surveys differ.

Japanese Atomic Bomb Survivors

Leukemia.—Little and Muirhead
(99,100) have shown that the dose re-
sponse is not linear at doses less than
150 mSv. In fact, a quasi-threshold, or
even a hormetic effect, may exist below
this dose.

Solid tumors.—Preston et al (101,102)
analyzed all solid tumors together. Be-
cause histologically distinct human tu-
mors have widely different dose re-
sponses (103), mixing tumors leads to
debatable results.

As epidemiologic data are inaccurate
at low doses (104,105), one may fit them
with a linear response relationship, a lin-
ear quadratic response relationship, a
quadratic response relationship, a thresh-
old somewhere between 40 and 60 mSv
(101,102), or even a hormetic response
relationship. Heidenreich et al (104) con-
cluded that there was no significant in-
crease in cancer incidence or mortality at
doses less than 200 mSv, whereas other
authors believe that this threshold is less
than 100 mSv (9,11).

The concept that cancer induction
proceeds similarly after low and high
doses and dose rates is inconsistent
with biologic evidence. Hence, assess-

ments of low-dose risks in cohorts of
atomic bomb survivors, radiation work-
ers, or people exposed to radon at home
included individuals who received more
than 100 mSv and thus are subject to
bias (105). When investigating risks at
doses less than 100 mSv only, cancer ex-
cess is not seen. This does not exclude the
possibility of an effect too small to be de-
tectable, but suggests that the carcino-
genic risk, if it exists, should be very low
and of a debatable importance.

Atomic bomb survivors were also ex-
posed to neutrons, of which small doses
are potentially carcinogenic. A relative bi-
ological effectiveness (RBE) of 10 was
used for calculating the dose equivalent
(in sieverts). An RBE of 30 would have
been more appropriate. Neutrons may
explain the putative carcinogenic effect of
low doses (104,106,107).

Confounding factors.—The atomic
bomb survivors were exposed to radia-
tion and to other carcinogenic agents. For
example, the September 11, 2001, World
Trade Center attack in New York City
released into the environment a variety of
toxins, causing first responders to suffer
from acute aerodigestive symptoms with
persistent respiratory inflammation and
possibly granulomatous disease (108).
Long-term effects are being investigated
(109). The atomic bombs released far
greater levels of nonradioactive toxins
and caused burns, with chronic inflamma-
tion being potentially carcinogenic. Fire-
fighters have increased cancer risks, sug-
gesting that inhalation of carcinogenic
and toxic compounds brings an occupa-
tional cancer risk (110-115).

In summary, the analyses of the
atomic bomb data do not provide solid
arguments for the LNT model.

In Utero Irradiation

There is the claim that prenatal irradia-
tion with x-rays delivering a dose of
10-20 mGy increases cancer risk dur-
ing childhood by about 40% (116). Re-
sults of a large case-control study did
not support this finding (117). Among
the confounding factors are the more
frequent antenatal examinations with x-
rays in older mothers and in mothers of
high socioeconomic status, which are
both factors known to be associated

with an increased risk of childhood can-
cer (118). Underlying diseases leading
to increased examinations with x-rays
cannot be excluded as risks of childhood
cancer (16). A Swedish population-
based study matched children with leu-
kemia with database records of in-
stances of antenatal irradiation with x-
rays (without recourse to interviews)
and found no association between in
utero irradiation and leukemias (119).
Twins have a higher probability of in
utero irradiation than singletons, and
there was no increased leukemia risk
(120,121). No increased cancer risk has
been observed after in utero irradiation
in atomic bomb survivors (122) or in
experimental animals. Hence, the Inter-
national Agency for Research on Cancer
expert committee did not accept ante-
natal irradiation with x-rays as an estab-
lished cancer risk factor (118).

Chernobyl Accident

Contrary to previous claims, there was
no increase in leukemia or other can-
cers (except thyroid cancer) in regions
contaminated after the Chernobyl acci-
dent where thyroid doses ranged up to 1
Sv (123). The increase in thyroid cancer
among young children is correlated with
dose (124), and a threshold at 200 mSv
is compatible with data (123).

Occupational Exposure

An excess of skin cancer and leukemia
was detected prior to 1950 in radiolo-
gists and radiologic technicians. Fol-
lowing the implementation of the rec-
ommendations of the ICRP in 1930,
this excess decreased and disappeared
among those beginning their practice
after 1950, despite many receiving an-
nual doses greater than 50 mSv (126-
129). Similar data exist for airplane
crews (130).

Among workers at nuclear power
plants, a first study in 85 000 workers
(131) did not reveal any increase in
solid tumors but found a small increase
in leukemia for those exposed to doses
greater than 400 mSv. In a larger cohort
(407 391 workers) studied subse-
quently (132), the cancer incidence af-
ter a cumulative dose of less than about
150 mSv was indistinguishable from that
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in the control group. Questionably ele-
vated cancer incidences were observed
only in Canadian workers and in those at
the Oak Ridge Laboratory (Oak Ridge,
Tenn); these two cohorts included work-
ers who were active during World War II,
when dosimetry was not a main concern.
Another study of Canadian workers who
worked in later years (133) found a can-
cer mortality rate of 0.7 of that in the
matched control population.

For large numbers of luminescent
dial workers contaminated with radium
(60) and patients contaminated with
thorium (61), follow-up was as long as
that for atomic bomb survivors. Can-
cers (osteosarcoma or liver cancers)
were not observed for doses less than a
few gray (60,61,134).

High Background Radiation

Most studies around nuclear plants (135)
have not detected any excess cases of
cancers and leukemia or other diseases.
Around some plants, a small excess of
leukemia cases among children has been
observed (136). However, this excess
does not appear to be related to irradia-
tion of children or their parents but
rather to have been caused by a virus and
population mixing (137-141).

People living in Kerala, India, ex-
perience lifetime terrestrial irradia-
tion of up to 70 mSv a year, much
higher than other populations in India,
without an increased risk of carcino-
genesis. In China (Yangjiang and its
surrounding area), people are ex-
posed to two levels of radiation per
year—6.4 and 2.4 mSv, respectively.
There was no increase in cancer or
mortality (142,143), although the
higher level of background radiation
was confirmed by a higher incidence of
chromosomal aberration (144). The
existence of these aberrations despite
the absence of a cancer excess is an
argument in favor of the absence of a
causal relationship between a chromo-
somal aberration and cancers.

Irradiation with X-rays for Diagnostic
Examinations

Several studies in patients after x-ray-
based examinations (145-147) have not
detected any increase in leukemia or

solid tumors. The only positive studies
were in girls or young women after re-
peated chest fluoroscopic procedures
for chronic tuberculosis (148,149) or
scoliosis (150). Among these patients,
excess breast cancer was detected only
for cumulative doses greater than about
0.5 Gy. No other excess cancer ap-
peared after cumulative doses up to 1
Gy. There was also no increased cancer
after cardiac catheterization (147).

Several studies stressed the risk of
cancer after diagnostic irradiation with
x-rays by using the LNT model (8,9).
However, several investigators (151-
153) have questioned these estimates be-
cause of their doubtful assumptions. An
overestimate of the diagnostic radiology
risk may deprive patients from adequate
treatment (154,155).

Radiation Therapy

One million patients each year undergo
radiation therapy. By using cancer regis-
tries, investigators have indicated that the
incidence of second primary cancers is
incompatible with the LNT model and
with the risk coefficients derived from Hi-
roshima and Nagasaki (103,156,157).
The cumulative doses outside the target
volume (138) ranged from a few milli-
grays to 60 Gy. A low dose rate (<15
mGy/min) reduced carcinogenesis not
only in experimental animals (97,103) but
also in patients (103,159,160). A dose
per fraction of less than 120-160 mGy
cumulating to about 3 Gy caused less car-
cinogenesis than higher doses per frac-
tion (103,154,157). A threshold has been
reported at about 0.6 Gy (corresponding
to doses per fraction of 20 mGy); above
this threshold, the dose-effect relation-
ship appears to be quadratic (154).

An excess of solid tumors and leu-
kemia has been observed in patients
after treatment with several hundred
millicuries of iodine 131 (**'T) for thy-
roid cancer (161). No excess cancer
was detected among the large number
of patients after they received 10-20
mCi (370-740 MBq) of "'l for the
treatment of hyperthyroidism (162).
Moreover, a preliminary meta-analy-
sis in 415 000 individuals exposed to
less than 100 mSv showed no cancer
excess (163).

a Particles are at least as carcino-
genic as electrons. Therefore, the ab-
sence of cancer for doses less than a
few grays, such as in patients who re-
ceived Thorotrast and who have large
numbers of cells that have been tra-
versed by an a particle, cannot be
overlooked (61,134).

There are potent defenses against the
carcinogenic effects of ionizing radia-
tion. Their efficacy is much higher for
low doses and dose rates; this is incom-
patible with the LNT model but is con-
sistent with current models of carcino-
genesis (16). The data suggest that a
combination of error-free DNA repair
and elimination of preneoplastic cells
furnishes practical thresholds (Figure).

For low linear energy transfer radi-
ation, experimental animal data show
the absence of carcinogenic effects for
acute irradiation at doses less than 100
mSv and for chronic irradiation at doses
less than 500 Sv (97,103,164).

Among humans, there is no evi-
dence of a carcinogenic effect for acute
irradiation at doses less than 100 mSv
and for protracted irradiation at doses
less than 500 mSv (10,103,147,163).
Surveys of second primary malignancies
in patients who have undergone radia-
tion therapy should provide more infor-
mation (103,154,157).

The fears associated with the con-
cept of LNT and the idea that any dose,
even the smallest, is carcinogenic lack
scientific justification (10,16,78,163).

The Chernobyl accident showed that
overestimating radiation risks could be
more detrimental than underestimating
them. Misinformation partially led to
traumatic evacuations of about 200 000
individuals, an estimated 1250 suicides,
and between 100 000 and 200 000 elec-
tive abortions outside the Union of So-
viet Socialist Republics (164,165).

The DDREF attempts to overcome
discrepancies between experimental or
epidemiologic data and LNT predic-
tions; it implies that for low doses
and/or dose rates, the probability for
DNA damage to be carcinogenic is re-
duced by half. However, the DDREF
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leaves unchanged the highly debatable
concept that even the smallest dose can
induce cancer.

Overestimating the risks from diag-
nostic irradiation with x-rays may harm
patients when appropriate studies are
withheld for fear of potential malprac-
tice (155).

The LNT model (with or without the
DDREF) is inconsistent with biologic
and experimental data, which show the
nature and the effectiveness of immedi-
ate and delayed defense systems to vary
widely with dose and dose rate. No con-
vincing epidemiologic data support the
LNT relationship. It has been said that
for low doses, epidemiology faces its
limits (166).

Defenses against the oxidative radi-
cals created by water radiolysis are very
effective for doses that create a number
of radicals similar to those observed
during oxidative stress. These defenses
are poorer against high doses or dose
rates greater than 0.5 Gy/min. DNA re-
pair systems are very effective at low
doses or dose rates (about 5-10
mGy/min) and become more error
prone with increasing dose and dose
rate.

The elimination of mutant cells by
death or proliferation arrest is a crucial
defense. Most human cancers display
defects in apoptosis or other means of
eliminating mutant cells (167). Dam-
aged cells can be eliminated after low
doses by means of death, senescence,
or immune response.

Low-dose-rate irradiation (approxi-
mately 10 mGy/min) is less carcinogenic
(per unit dose) than high-dose-rate irra-
diation (1 Gy/min). Fractionated irradi-
ation is much less carcinogenic than
acute irradiation owing to DNA repair
during the time interval between frac-
tions. Doses to normal tissue less than
150 mSv per radiation therapy fraction
appear to be much less carcinogenic
than higher doses (154,157).

All data suggest the existence of
practical thresholds for carcinogenesis.
This concept means that below the dose
threshold, the carcinogenic risk, if it ex-
ists, is so small that it 1s without clinical
importance. The fear of carcinogenesis
from diagnostic x-ray examinations (eg,

CT) that has been propagated is unjust.
It is unethical to fuel anxiety with debat-
able hypotheses. A balance should be
made between the risk, if any, of an
x-ray examination and the medical in-
formation it provides (155). More hu-
man data are urgently needed and could
be assembled by studying patients un-
dergoing radiation therapy.

LNT was a useful model half a cen-
tury ago. But current radiation protec-
tion concepts should be based on facts
and on concepts consistent with cur-
rent scientific results and not on opin-
ions. Preconceived concepts impede
progress; in the case of the LNT model,
they have resulted in substantial medi-
cal, economic, and other societal harm.
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